A weighted least squares finite element method for elliptic problems with degenerate and singular coefficients

نویسندگان

  • S. Bidwell
  • M. E. Hassell
  • Chad R. Westphal
چکیده

We consider second order elliptic partial differential equations with coefficients that are singular or degenerate at an interior point of the domain. This paper presents formulation and analysis of a novel weighted-norm least squares finite element method for this class of problems. We propose a weighting scheme that eliminates the pollution effect and recovers optimal convergence rates. Theoretical results are carried out in appropriately weighted Sobolev spaces and include ellipticity bounds on the weighted homogeneous least squares functional, regularity bounds on the elliptic operator, and error estimates. Numerical experiments confirm the predicted error bounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the finite element method for elliptic problems with degenerate and singular coefficients

We consider Dirichlet boundary value problems for second order elliptic equations over polygonal domains. The coefficients of the equations under consideration degenerate at an inner point of the domain, or behave singularly in the neighborhood of that point. This behavior may cause singularities in the solution. The solvability of the problems is proved in weighted Sobolev spaces, and their ap...

متن کامل

Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part I

First-order system least squares (FOSLS) is a recently developed methodology for solving partial differential equations. Among its advantages are that the finite element spaces are not restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares functional itself serves as an appropriate error measure. This paper studies the FOSLS approach for scalar sec...

متن کامل

Analysis of First-Order System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part II

First-order system least squares (FOSLS) is a methodology that offers an alternative to standard methods for solving partial differential equations. This paper studies the first-order system least-squares approach for scalar second-order elliptic boundary value problems with discontinuous coefficients. In a companion paper [M. Berndt, T. A. Manteuffel, S. F. McCormick, and G. Starke, Analysis o...

متن کامل

A Weighted H(div) Least-Squares Method for Second-Order Elliptic Problems

This paper presents analysis of a weighted-norm least squares finite element method for elliptic problems with boundary singularities. We use H(div) conforming Raviart–Thomas elements and continuous piecewise polynomial elements. With only a rough estimate of the power of the singularity, we employ a simple, locally weighted L2 norm to eliminate the pollution effect and recover better rates of ...

متن کامل

Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficients

This paper addresses a multi-scale finite element method for second order linear elliptic equations with rough coefficients, which is based on the compactness of the solution operator, and does not depend on any scaleseparation or periodicity assumption of the coefficient. We consider a special type of basis functions, the multi-scale basis, which are harmonic on each element and show that they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013